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Projection of Differential Equations

Vlastimil Kfivan*

Abstract

In the paper a class of projections, called the G-projections, is
defined. These projections are used to project the dynamics of a
differential inclusion %(f) € F(z(t)) onto the contingent cone to a
given set K. The existence of a solution to the projected differential
inclusion iz proven. The G-projections generalize the projection of
the best approximation, and the G-projected differential inclnsions
were used to construct models in population biology.

1 Introduction

Projections of differential inclusions play an important role in many appli-
cations of mathematics. For example, projected differential inclusions were
used in mechanics, see [11], or in economics to build planning models, see
(5.{61.[7],{8). In these applications the projection of the best approximation
was used to project the dynamies of a differential inclusion or an equation
onto the tangent cone to a given set. But in some cases the projection of
the best approximation may not be adequate. For this reason, we define in
this paper a class of projections, called the G-projections that generalize
the projection of the best approximation. The G-projection of differential
inclusions was motivated by the construction of population growth equa-
tions, see [9],{10]. Using the G-projection, the dynamics of a differential
inclusion

(1) &(t) € F(=(1))

is projected onto the contingent cone Tk(z) to a given sel K. We get a
projected differential inclusion

(2) (1) € IF, (F(=(t)))
*Partially supported by CAS 18002
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where 11§, (F(z)) denotes the G-projection of F(z) onto the contingent
cone Tx(z). Unfortunately, the standard existence theorems for differen-
tial inclusions cannot be used to prove the existence theorem for (2), since
in general, II§_(F(-)) does not inherit the properties of F(-) and K. To
prove an existence theorem for (2), an existence theorem for a generalized
differential variational inequality is given and it is proven that the pro-
jected differential inclusion (2) has the same solution set aa this variational
inequality. A similar approach to prove an existence theorem for projected
differential inclusions in the case of the projection of best approximation
was used in [1].

2 The G-projection

Definition 1. Let A C R™. Then C'; (A} denotes the positive cone spanned
by A, i. e,
UksokA if A£0

Ci(4) := {
{0} if A=0.

Remark. Let g € R". Instead of writing C({g}) we will write C(g).

Let us recall that for 8 non-empty set A C R™ the negative polar cone
is A= :={y e R" } {y,a) <0, forevery a € A}. For a set-valued map
F : R ~+ R" we denote by Im(F) its image, by Dom(F) its domain and
by Graph(F) its graph.

Lemma 2.1 Let G : R™ ~ R"® be ¢ set-valued map with convexr compact
values.

a) Letz, € Dom(G) and 0 ¢ G(z,). Then C1(G(x,)) is the smalleat elosed
conver cone coniaining the set G(x,). Consequently Cy(G(z.)) =

(Glz))~~.

b) Let Graph{G) be¢ compact and 0 & Im(G). Then the set-valued map
C+(G) : R™ ~+ R™ has a closed graph.

Proof. a) Let z, € Dom(G). Since C1+(G(z,)) is a cone spanned by a

penvex compact set disjoint from 0, it follows that it is closed. Therefore

Ci{Glzo)) = (Glza))™ see [Lp.31].

.
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b) We prove that C'.(G(.)) has closed graph by contradiction. Let (Tn,un) €
Graph(C...(G)), (2n,yn) — (z,y) ¢ Graph(C4(G)). Since y ¢ C(G(=z)),
1. e. ¢ # 0, it follows that y, = 0 only for a finite number of n's. Therefore
we may assume that z, € Dom(G) for every n. Tt follows there exist ko >0
and gn € G(z,) such that y, = k,¢,. Since G(.) has compact graph, we
can choose a convergent subsequence from g, (denoted again g,,) such that
gn — g € G(z). Since 0 ¢ Im(G) it follows that a subsequence of k., is

converging, k, — k < co. Consequent! , 4 = kg, Hence C
contradietion. il g ¥ € C4(G(z)), a

Q.E.D.

In the following definition a class of projections, called the (-projections is

d'eﬁned. These projections “project” a point onto a set along the directions
given by a set (3.

Definition 2. Let K ¢ R™ be a non-empty set, G- C R™ be possibly
empty. Then .

1. For every g € G and every u € C,(g) + K define

EX(u) = inf{k>0|u—kge K},
M (u) = u—kf(u)g.

2. Let u € C4(G) + K. Then
¢ (u) = U I, (u),

(966G | veCL(9)+ K}
3. G =0, then we set

g (u) := u.
We say that II§ (u) is the G-projection of u onto the set K.

In the rest of this paper the set K from Definition 2 will be the contingent,
cone, see [1].

3 Generalized Variational Differential Ine-
qualities

Let K C R" be a non-empty closed set. Let us consi
. nsider a set-valued m
F : K-~ R" and let °

(3) Yz €K, F(z)NTk(z) #0.
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For upper semicontinuous, convex and compact valued map F(-}, (3) is well
known viability condition ensuring the existence of a viable solution (in K)
for the following differential inclusion

(4) £(t) € F(=(t)),

see {1],[2].

1f (3) is not satisfied then the dynamics of (4) has to be changed at least
on the set of these points where (3} does not hold in order to get a viable

solution in K. Let G : K ~ R" be given set-valued map and let us consider
the following viability problem

l 2(t) € F(z)— Cy(G(x(t))) for almost all ¢ & [0,T)
(5) ) € K for every t € [0,7]
:1':(0) = zp€ K.
Let
{8) Q(z) 1= Flz) N (T (z) + C4(G(2))), z€ K.

Next theorem gives an existence result for {5).

Theorem 3.1 Let K C R™ be a non-empty compact set, F : K ~ R" be
an upper semicontinuous sel-valued map with non-emply compact convex
values. Let G 1 K ~» R" be a seil-valued map with compacl graph, convez
values and 0 € Im(G). Let Dom(Q?} = K" and } :

7 sup inf inf -zl € ¢ < co,
(M ,Eﬁjen(z)zeng:()‘)(n IS -zl

Then for every T > 0 there ezists a solution to {5).

Proof. Let _

M(z) := F(z) = (B(0,¢) N C4(G(2))),
where B(0, ¢} denotes the closed ball with radius ¢, centered at 0. Obviously,
M{(-) has convex and compact values. The set-valued map

z ~ B(0,¢) N Cu(G(z))

is upper semicontinuous due to Lemma 2.1. Since F(.) is upper semicon-
tinuous and K is compact, it follows (see {1, p.42]) that Im(F) and con-
sequently Im(M} are compact sets. It is easy to see that M(.) has closed
graph. Indeed, let m, € M(2,), 2, — &, m, — m, ile, m,y = fi, — 2z,
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whe_re f“.e ..F(z..,), zn € B(0, €)NC(G(z,)). From compactness and upper
semicontinutty it follows that we may choose subsequences converging to
f € F(z) and z€ B(0,c) N Cp(G(z)). Consequently m = f -z ¢ M(z).
jI‘herefore‘z M(-) is upper semicontinuous, having closed graph and compact
image. Since

Vee K, 3feQ(z), 3 €Nyl (f) such that |If — || < c
then we have
z € Tk (2) N{f = (B(0,¢) N C4(G()))) C Tic(2) N M(z),
so that the tangential condition
(8) ME)NTk(z) £ 0
is satisfied for every z € K. The existence of a viable solution to
#(1) € M(a(t))

follows from the viability existence theorem, see [1], p.182.

Q.E.D.

Remark. Differential variational inequality, see [1]

o 30) € F(z(tn—thx(tn,}
z(t) € K

- where Ny (z) denotes the normal cone, can be thought as a special case of

(5) for CL(G(z)) == Ng(z) for every z € K.

4 Projected Differential Inclusions

Let K 'C R" be a non-empty set and let F : K ~» R be a set-valued
Map with non-empty values. Let G : K ~» R” be 3 set-valued map and

[')OI'I.I(Q) = K, where Q(-) is defined by (6). The G-projection of a differen-
tial inclusion '

(10) “ #(1) € F(z(1)

is defined in the following way.
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Definition 3. The G-projection of the differential inclusion (10) is the
following differential inclusion

(11) i) € 0§, (Plz@) = |J DESL (.
Jen(=(t))

This differential inclusion is called the projecied differential inclusion.

The following theorem shows that sclutions to the differential inclusion (11)
are solutions to the differential inclusion (5) and conversely.

Let us recall that a set X C R"® is reguler if Bouligand contingent cone and
Clarke tangent cone coincide and, consequently, they are convex cones, see
{4]. If 2 ~» Ty (z) is lower semicontinuous then the set K is regular, see [3].
In [3] such sets were called sleek sets.

Theorem 4.1 Let K C R® be a non-emply regular sel. Let F: K ~ R®
be a set-valued map with non-empty values, G : K ~ R™. Let Dom{Q) = K
and for everyx € K,

(12) G(z) N Tx(z) = B

Then the viable solutions fo the differential inclusion (5) are the solutions
to the differential inclusion (11) and conversely.

Proof. Since

N7, (F(z(1)) € F(z(t)) - C4(G(=(1))

then solutions to the differential inclusion (11) are solutions to the differ-
ential inclusion (5).

Conversely: every viable solution to the differential inclusion (5) is a solu-
tion to the differential inclusion (11). Let z(-) be a viable solution to the
differential inclusion (5) on [0, T, (T > 0) i.e.

() = f{t)— z() foraa. t€(0,T),

where f(t) € F(z(1)), 2(t) € C4(G(z(1))). Let [0,T] = E; U E7 where
te By if G(z(t)) =0and € E;if G(z(t)) # 0. Let us assume that z(.)
15 not a solution to the differential inelusion (11). It means that there exists
aset A C [0, 7] of a positive Lebesque measure u(A) > 0 such that

£(1) ¢ G, (F(z(t))) for tEA
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Since for t € By, 2(t) = f(t) € g _(F(2(t))) it follows

P(A n El)
F(A n Eg)

0,
#(A) > 0.

i

For almost all £ € A £,
() = f(t) — k(t)g(t) € T (2(2))
where g(t) € G(2(2)) and k(1) > £} (£(2)). For almost all t € AN E;
~#(t) = k(t)g(2) — £(t) € T (x(t)).

. Trilx
Since £(t) - k5" (£(1)g(t) € T (x(2)) for t € A N Ey and Tx(=(2)) is
convex (since K is regular), then

(k(t) = BT (£(1)g(t) € T (2(2)) for ae. teAn By,

Due to the assumption (12), the inequality k(t)—k:;’f)(’('))(f(t)) > 0 cannot

. Tx(z
hold,. i. e, k(t) = k’(‘)( (m(f(t)) for almost all t € AN By and z(-}is a
solution to the differential inclusion {1n).

Q.E.D.

5 Projected Differential Inclusions on the
Sets Defined by Constraints

[n( ;his. secltion it is assumed that the set K is defined by p functions
ril), t=1,.00.,p

(13) K:={zeR"|r(z) £0,...,7(2) < 0}.

We consider again differential inclusion (10). For K defined by (13) we may

define a set-valued selection from 1§, (F(z)), denoted by #(F{z)) such that
the solutions to

3(t) € n(F(a(1)))

are still solutions to (5) and conversely.

T'hrough.out this section it is assurmed that ri{t), 1= 1,...,p are strictly
differentiable, see {4]. This is for example satisfied if i i=1,...,p
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are continuously differentiable. By r{(z) we denote the strict derivative of
ri{z). Let
Iz)y:={i=1,...,p|ri(z) = 0}.

If we assume that ri(x), ¢ € I(z) are positively linearly independent then
it follows from [4] that

Tk(z) = {v € R" | {ri(=),v) <0, i€ I(x)}.

Let G; : K~ R"™, i = 1,...,p be given set-valued maps. For every x € K
we define:

(1)  G(z):= conv{Gi(z) | i € I(z) such that z € Dom(Gi)}.
Let

(18)  w(z) = {f € F(z} |3z € C4(G(=)), (ri(=), f — z) = 0,i € I(z)}.
Now we define a set-valued map 7(F(.)).

Definition 4. Let K C R" defined by (13) be a non-empty set where
the functions r¢(.), i = 1,...,p are strictly differentiable. Let for everﬂy
r € K, ri(2), i € I(z) be positively linearly independent and F : K ~ R",
G; : K~ R" i=1,...,pbe set-valued maps. Then for all z € K, we
define:

i) Let f  Tx(z) and f € w(z) then

a(f} = {f — 2| 2 € CL(G(2)), (ri(=), f — 2) = 0,i € I{z)}
ii) Let f ¢ Tx(z), f & w(z) and f € Q(z). Let p be any element of
0§, (f). Then
7(f) = p.

iii) Let f € Tk (z) then
a(f) = f.

iv)

m(F(z)} :={r(f) | f € A=)}

Theorem 4.1 may be reformulated for the differential inclusion

(16) - #(t) € w(F(a(t)))-
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Theorem 5.1 Let K ¢ R" defined by (18) be a non-empty set. Let F -
K ~ R™ be a set-valued map with non-emply values, G; : K ~+ RP,
i=1...,p Let G(z)NTx(z) = 0 for every = € K and Dom{)) = K.
Then the solutions 1o the differential inclusion (16) arc the viable solutions
to the differential inclusion (5) and conversely. Moreover, if F(z) = {f(z)}
is single valued and for every z € K and every f € F(z)\ Tk (z),

(17) (C4(G(=)) ~ C(G())) N T (2) N (~Tx (z)) = {0}
then n(f(z)) is single-valued.

Proof. First we prove that for all z € K
(18) w(F(z)) C I, (F(z)).

Let us assume that there exist f € Q(z), k > 0, g € G(z) such that
f—kgen(f)and f—kg ¢ 0%, (F(z)). Consequently, f & Tg(z) and
£ € w(z), otherwise (18) is obviously satisfied. It follows k > kf“‘. Since
{f—kg.ri(z)) = 0fori € I(z) and {f — k7% g, ri(z)) <0 for every i € I(z)
we get

{(k = T)g, (=) < 0, i € Kz).

Therefore (k— k7% )g € Tx(z). This contradicts with the assumption G(z}N
Tx(z) = 0. Therefore k = kTx and x(F(z)) C HgR(F(::)) C F(z) -
C1(G(x)). Tt follows that the solutions to the differential equation (16) are
the solutions Lo the differential inclusion {5).

Following the lines of the proof of Theorem 4.1, we assume that for a
solution z(.) to (5) there exists a set A of a positive Lebesque measure such
that

£(t) g 7(F(z(t)), t € A.
Let E; and E} be as in the proof of Theorem 4.1, Since for ¢ & By, 2(t) =
f(t) and for almost all ¢ € E|, f(t) € Tx(z(t)), it follows f(t) € ={ f(t)) for

almost all £ € F;. Consequently, #(ANE ) =0 and u(AN E;) > 0. Since
(1) is viable, for almost all t € AN E,

(19) #(t) = f(1) - k(t)g(t) € Tre(z(t))
where f(1) € F{z(1)), g(t) € G(z(t)) and k(t) > 0. For almost all t € AN E,
(20) —£(t) = k(t)g(1) - f(2) € Tr (2(2)).

From (19), (20) it follows that for almost all t € A N Ea,

{ri(2(t)), £(t) - k()g(t)) = 0, forevery ic I(z(2)).
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It follows that for almost all t € ANE,, f(t) € w(z(1)) and f(t)—k(t)g(t) €
x(f(t)). Consequently, z(t) is solution to (18).

‘We prove that for the single valued map F(x) = {f(z)}, #(f(z)) is single-
valued too. Since for f € Tk (z) the statement is trivial, let us assume that
f & Tx(x). We may assume that f € w(z); otherwise x(f} is single-valued.
Let :

222 en(f), 4%
From Definition 4 it follows

21=f—k1 1’ 22=f-—-k2 2'

where
and

{ri(z), f - klgl) = {ri(z), F = F*¢%) =0, i€ I(z).
Therefore,

{ri(z), k'¢’ = ¥*¢*) =0, i€ I(z)
and consequeﬁtly
kgl = k%% € Tk (z) N =Tk (z).
From the assumptions it follows
Kot = k2g?,
i.e., #{f) is single valued.

Q.ED.

Let us note that (16) generalizes the following differential inclusion
(21) &(t) € - (F(z(t)))

where 7' denotes the projection of best approximation onto Tk (z).

Proposition 5.1 Lel K C R® defined by (13} be a non-emply sel whfre
the functions ri(.), i = 1,...,p are sirictly differentiable and vi(z), i €
I{z) are posilively linearly independent for every z € K. Let Gy(z) :=
{ri(z)} if ri(z) = 0. Then (I6) has the same solution set as (21).
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Proof, Let us note that under the assumptions it follows that the normal
cone to K is

Nic(z) = { Y auri(z) | ai 2 0}

iei(x)

and Tk (z) is convex, see [4], p.57. From Theorem 5.1 it follows that (16)
has the same solution set as (5) which is

£(t) € F(z()) - Nk ((1)).

From [1] it follows that this differential inclusion has the same solution set
as (21).

Q.E.D.

6 G-projection of control systems

The method of (—projection can also be used to “correct” the dynamics of
control systems when there is no control regulating a viable solution. Let
us consider a control system

='(t) = f(=(2),u(t))
(22) ut) € U
z(!) € K,

where U CR!, K CR", f: K x U~ R".

From the Filippov Lemma, [1,p.91] it follows that for continuous function
F(-,+), the control system (22) is equivalent to the following constrained
differential inclusion

#(t) € F(z()) := {f(=z(t),u(t)) | u(t) € U}
z2(t) € K.

Consequently, the results from the previgus sections may be reformulated
for the control system (22).

Let us remark that using the contingent derivative instead of the contingent
cone (see [1]) all the results stated for the autonomous case here may be
reformulated to the non-autonomous case.
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Modified Euler Methods for Differential

Inclusions
Frank Lempio

Abstract

Classical Euler method and simple modifications like the method
of Euler-Cauchy, impraved Euler method and implicit midpoint rule
are discussed with regard to the approximate solution of differential
inclusions.

Numerical tests suggest first order convergence of Euler’s method
at least for specially structured right-hand sides even if the usual
Lipschitz condition does not hold. The basic idea of the proof of

this convergence property is sketched using a strengthened one-sided
Lipschitz condition,

Order reduction for methods which are of higher order for single-
valued sufficiently smooth right-hand sides is exemplified numetrically
for improved Euler method and implicit midpoint rule, Typical ad-
vantages of implicit midpoint rule are discussed.

{AMS) Subject Classification: 34A60, 49025, 65105

Keywords: differential inclusions, difference methods.

1 Introduction and Preliminaries

Qur aim is to study convergence properties of difference methods for dif-
ferential inclusions. In this paper, we concentrate on simple modifications
of Euler’s method for the following class of initial value problems.

1.1 Injtial Value Problem. Let | — [to, T} with T > tg be a real interval,
let F:7xIR" = IR" be a set-valued mapping of I x R™ into the set of all
subsets of R™, and let the initial vector ¥o € R” be fixed.

Find an absolutely continuous function ¥(-) : I — R™ which satisfies the
initial condition

(1.1) ¥(to) = o
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